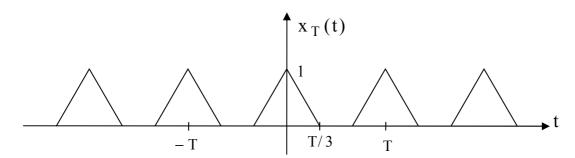
Le développement en série de Fourier d'un signal analogique périodique

1. Définitions

 $x_T(t)$ = Signal analogique périodique, de période T



Si $x_T(t)$ est, sur une période, une fonction continue de carré sommable $(\int_{-\frac{T}{2}}^{+\frac{T}{2}} x_T^2(t) dt$ fini),

on a:

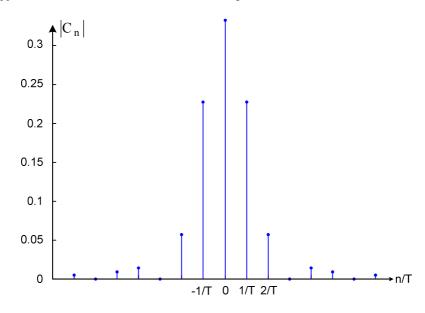
$$x_{T}(t) = \sum_{n=-\infty}^{+\infty} C_{n} e^{jn\frac{2\pi}{T}t}$$
 avec $C_{n} = \frac{1}{T} \int_{-\frac{T}{2}}^{+\frac{T}{2}} x_{T}(t) e^{-jn\frac{2\pi}{T}t} dt$

 C_n = Coefficient de Fourier (Remarque : C_0 = valeur moyenne de $x_T(t)$)

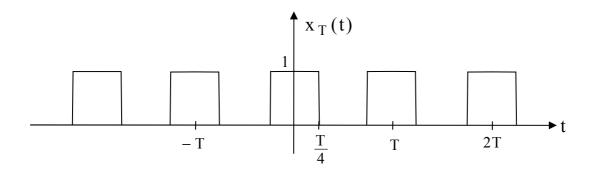
 $\mathbf{x}_{\mathrm{T}}(t)$ est ainsi décomposé sur une base de fonctions orthogonales harmoniques :

$$e^{jn\frac{2\pi}{T}t} = \cos(n\frac{2\pi}{T}t) + j\sin(n\frac{2\pi}{T}t)$$

La suite $\left\{C_{n}\right\}$ constitue le spectre (discret) de $x_{T}(t)$.



2. Un spectre fondamental et le phénomène de Gibbs

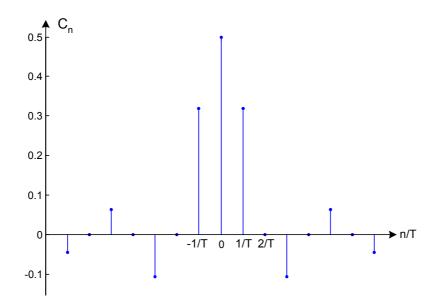


Les C_n sont réels car $x_T(t)$ est une fonction paire.

On peut les calculer :
$$C_0 = \frac{1}{2}$$
, $C_1 = \frac{2}{\pi}$, $C_2 = 0$, $C_3 = -\frac{2}{3\pi}$, $C_4 = 0$, ...

Plus généralement :
$$C_n = \frac{2\left(-1\right)^{\frac{n-1}{2}}}{n\,\pi}$$
, pour n impair $C_n = 0$, pour n pair

Ainsi:
$$x_T(t) = \frac{1}{2} + \sum_{\substack{n = -\infty \\ n \text{ impair}}}^{+\infty} \frac{2(-1)^{\frac{n-1}{2}}}{n \pi} \cos(n \frac{2\pi}{T})$$



Décomposition du signal $x_T(t)$ en série de Fourier

On peut examiner la convergence de cette série en représentant le membre de droite en se limitant à 3 termes, 6 termes, 20 termes puis 40.

On constate que la convergence est lente car pour « réaliser » les montées rapides des créneaux il faut des sinusoïdes hautes fréquences.

D'autre part, on observe des oscillations qui constituent le phénomène de Gibbs.

